
1

Electrical and Computer Engineering

Computer Design Lab – ENCS4110

ARM Subroutine/procedure/function Calls

Objectives

 Explore ARM subroutine calls and implement them in Keil uVision5.

 - Using BL SUB_Name, and MOV PC, LR or BX LR

 - Study and using stack

ARM processors do not provide a fully automatic subroutine call/return mechanism like other
processors. ARM's branch and link instruction, BL, automatically saves the return address in the
register R14 (i.e. LR). We can use MOV PC, LR at the end of the subroutine to return back to the
instruction after the subroutine call BL SUBROUTINE_NAME. A SUBROUTINE_NAME is a label in
the ARM program.

ARM Unconditional and Conditional Subroutine Calls

 Mnemonic Meaning

==

 BL SUB_A ; Branch to SUB_A with link save return address in R14

--

 CMP R1, R2 ; branch conditionally

 BLLT SUB_B ; if R1 < R2, then branch to SUB_B

 BLLE SUB_C ; if R1 <= R3, then branch to SUB_C

 BLGT SUB_D ; if R1 > R2, then branch to SUB_D

 BLGE SUB_F ; if R1 >= R2, then branch to SUB_F

--

 MOV PC, LR ; get the control of execution back after executing

 ; a subroutine/procedure

--

 BX LR ; Return to the calling function

--

 Using PROC and ENDP as a pair for procedures

2

Here is the encoding format of ARM's branch and branch-with-link instructions for your
reference.

Register Use in the ARM Procudure Call Standard

An Example Using a Subroutine Call

;The semicolon is used to lead an inline documentation

;When you write your program, you could have your info at the top document lock

;For Example:

;;;;Your Name:

;;;;Student Number:

;;;;Lab#:

;;;;

;;; Directives

 PRESERVE8

 THUMB

3

;;; Equates

 ;; Empty

;;; Includes

 ;; Empty

;;; Vector Definitions

; Vector Table Mapped to Address 0 at Reset

; Linker requires __Vectors to be exported

 AREA RESET, DATA, READONLY

 EXPORT __Vectors

__Vectors

 DCD 0x20001000 ; stack pointer value when stack is empty

 DCD Reset_Handler ; reset vector

 ALIGN

;Your Data section

;AREA DATA

SUMP DCD SUM

SUMP2 DCD SUM2

N DCD 5

 AREA MYRAM, DATA, READWRITE

SUM DCD 0

SUM2 DCD 0

;; The program Linker requires Reset_Handler

 AREA MYCODE, CODE, READONLY

 ENTRY

 EXPORT Reset_Handler

;;;;;Procedure definitions;;;;

SUMUP PROC

 ADD R0, R0, R1 ;Add number into R0

 SUBS R1, R1, #1 ;Decrement loop counter R1

 BGT SUMUP ;Branch back if not done

 ;MOV PC, LR

 BX LR

 ENDP

;;;users main program;;;;;

Reset_Handler

 LDR R1, N ;Load count into R1

 MOV R0, #0 ;Clear accumulator R0

 BL SUMUP

 LDR R3, SUMP ;Load address of SUM to R3

 STR R0, [R3] ;Store SUM

4

 LDR R4, [R3]

 MOV R7, #8

 LDR R5, SUMP2 ;Load address of SUM2 to R5

 STR R7, [R5] ;Store SUM2

 LDR R6, [R5]

STOP

 B STOP

 END

Introduction to Stack

 The stack is a data structure, known as last in first out (LIFO).

 In a stack, items entered at one end and leave in the reversed order.

 Stacks in microprocessors are implemented by using a stack pointer

 to point to the top of the stack in memory.

 As items are added to the stack (pushed), the stack pointer is

 moving up, and as items are removed from the stack (pulled or popped),

 the stack pointer is moved down.

Here is a picture to show the idea of Stack LIFO structure.

Stack Types: ARM stacks are very flexible since the implementation is completely left to the

software. Stack pointer is a register that points to the top of the stack. In the ARM processor, any one

of the general purpose registers could be used as a stack pointer. Since it is left to the software to

implement a stack, different implemenation choices result different types of stacks. Normally, there

are two types of the stacks depending on which way the stack grows.

5

1. Ascending Stack - When items are pushed on to the stack,

 the stack pointer is increasing. That means the stack grows

 towards higher address.

2. Descending Stack - When items are pushed on to the stack,

 the stack pointer is decreasing. That means the stack is growing

 towards lower address.

Depending on what the stack pointer points to we can categorize the stacks into the following two
types:

1. Empty Stack - Stack pointer points to the location in which the next/first item

 will be stored.

 e.g. A push will store the value, and increment the stack pointer

 for an Ascending Stack.

2. Full Stack - Stack pointer points to the location in which the last item

 was stored.

 e.g. A pop will decrement the stack pointer and pull the value

 for an Ascending Stack.

So now we can have four possible types of stacks. They are

1. full-ascending stack,
2. full-descending stack,
3. empty-ascending stack,
4. empty-descending stack.

They can be implemented by using the register load and store instructions.

Here are some instructions used to deal with stack:

Push registers onto and pop registers off a full-descending stack.

 Examples:

 PUSH {R0, R4-R7} ;Push R0, R4, R5, R6, R7 onto the stack

 PUSH {R2, LR} ;Push R2 and the link register onto the stack

 POP {R0, R6, LR} ;Pop R0, R6, and LR from the stack

 POP {R0, R5, PC} ;Pop R0, R5, and PC from the stack

 ;then branch to the new PC

===

 Reference: Cortex-M3 Devices Generic User Guide Page 3-29 to 3-30.

Subroutine and Stack

 A subroutine call can be implemented by pushing the return

 address on the stack and then jumping to the branch target

 address. When the subroutine is done, remember to pop out

 the saved information so that it will be able to return to

 the next instruction immediately after the calling point.

http://infocenter.arm.com/help/topic/com.arm.doc.dui0552a/DUI0552A_cortex_m3_dgug.pdf

6

An Example of Using Stack

;; Put your name and a title for the program here

;;

;;; Directives

 PRESERVE8

 THUMB

;;; Equates

;;; The EQU directive gives a symbolic name to a numeric constant,

;;; a register-relative value or a PC-relative value.

;;; Use EQU to define constants.

INITIAL_MSP EQU 0x20001000 ; Initial Main Stack Pointer Value

 ; Allocating 1000 bytes to the stack as it grows down.

 ; RAM starts at address 0x20000000

; Vector Table Mapped to Address 0 at Reset

; Linker requires __Vectors to be exported

 AREA RESET, DATA, READONLY

 EXPORT __Vectors

__Vectors DCD INITIAL_MSP ; stack pointer value when stack is empty

 DCD Reset_Handler ; reset vector

 ALIGN

; The program

; Linker requires Reset_Handler

 AREA MYCODE, CODE, READONLY

 ENTRY

 EXPORT Reset_Handler

 ALIGN

;;; Define Procedures

function1 PROC ;Using PROC and ENDP for procedures

 PUSH {R5,LR} ;Save values in the stack

 MOV R5,#8 ;Set initial value for the delay loop

delay

 SUBS R5, R5, #1

 BNE delay

 POP {R5,PC} ;pop out the saved value from the stack,

 ;check the value in the R5 and if it is the saved value

 ENDP

;;;;;;;user main program;;;;;;;;

Reset_Handler

7

 MOV R0, #0x75

 MOV R3, #5

 PUSH {R0, R3} ;Notice the stack address is 0x200000FF8

 MOV R0, #6

 MOV R3, #7

 POP {R0, R3} ;Should be able to see R0 = #0x75 and R3 = #5 after pop

Loop

 ADD R0, R0, #1

 CMP R0, #0x80

 BNE Loop

 MOV R5, #9 ;; prepare for function call

 BL function1

 MOV R3, #12

stop

 B stop

 END

Lab Assignment

Program#1:

Write an ARM assembly language program CountVowelsTwo.s to count how many
vowels and how many non-vowels are in the following string.

 "ARM assembly language is important to learn!",0

You are required to implement this by using a subroutine to check if a character is
vowel or not, and count the vowels and non-vowels in the calling function.

Recommendations for writing the program:

 Put the string in the memory by using DCB.
 Use R0 to hold the address of a character in the string.
 Use R2 to be the counter for vowels.
 Use R3 to be the counter for non-vowels.
 Build the program, debug until there is no error.
 Make a screenshot to show that the build is successful with no errors.
 Run the program step by step and see how values are changing in the registers.

OR just run the program and see the final results in the register R2 and R3.

https://www.cs.uregina.ca/Links/class-info/301/ARM-subroutine/lab.html

8

 Make a screenshot to capture the results in your designated registers.

You will hand in the following:

1. The source code in the file CountVowelsTwo.s
2. The screenshot (print screen) to show the program has been successfully built
3. The screenshot showing the number of vowels in R2 and non-vowels in R3.

Program#2:

Write an ARM assembly language program that will have a user defined
function/procedure factorial to calculate the factorial for a given number.

 For example:

 The factorial of 5 is 5! = 5 x 4 x 3 x 2 x 1

 The factorial of 0 is defined as 0! = 1

 In general, n! = n x (n-1)!, where n is a positive integer.

 If we write f(n) = n!, then f(n) = n f(n-1).

 It is a recursive function.

 Please implement it by using stack.

 When you test it, you can use relatively smaller numbers such as 3, 4, 5, or 6.

 For marking purpose, put the input number in the R1 and

 put your final result in the register R0 or

 indicate it specifically in your hand-in assignment.

You will hand in the following:

1. The source code in the file Factorial.s
2. The screenshot (print screen) to show the program has been successfully built
3. The screenshot showing the input number in R1 and the result in R0

